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Revisit Convolutional Neural Networks

A ConvNet is made up of Layers. Every Layer has a simple API: It transforms an input 3D
volume to an output 3D volume with some differentiable function that may or may not have
parameters

• Convolutional layer
• Pooling layer
• Fully connected layer
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https://lipzh5.github.io/presentation240318/assets/convolution.gif
https://lipzh5.github.io/presentation240318/assets/pooling.gif
https://keras.io/api/layers/core_layers/dense/


VGG Network Recap

Published in the paper titled Very Deep Convolutional Networks for Large-Scale Image
Recognition

Figure: VGG16: a total of 16 weight layers.
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https://arxiv.org/pdf/1409.1556v6.pdf
https://arxiv.org/pdf/1409.1556v6.pdf
https://lipzh5.github.io/presentation240318/assets/conv_net_configuration.pdf


VGG Network Recap

Figure: VGG19: A total of 19 weight layers.
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https://colab.research.google.com/drive/1M5yBSDrK9uqTxMipt_nuCU1K2IhVqURe?usp=sharing
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DeepDream

• What is it? An algorithm that visualizes the patterns learned by a neural network
• Over-interprets and enhances the patterns it sees in an image

Figure: You can make a neural network “dream” and enhance the surreal patterns it sees in an image

7 / 35



Intuition Behind: Going Deeper into Neural Networks

Whatever you see there, I want more of it!

• Recall canonical ANN training procedures (example)

• What exactly goes on at each layer?

• Amplify certain neuron’s activation

Figure: Dream on Ameca at different steps: 100, 500, 1000, 2000
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https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html
https://colab.research.google.com/drive/1hHSz7TROo--HK2SCqPF4zR6m8EqmZtLS?usp=sharing


How Does the DeepDream Algorithm Work

• Built upon a pre-trained convolutional neural network

• Select target layers and compute activations of the chosen layers

• Calculate the gradient of activations w.r.t the input image

• Update the image using gradient ascent

Gradient descent/ascent is an algorithm that estimates where a function 
(in our case a function representing a solution space, or a space of possible 
solutions) outputs its lowest/highest values. In other words, gradient 
descent will be able to point in the direction of the steepest descent only 
having the numerical output from one point. Gradient ascent will do the 
same, but point in the direction of the steepest ascent. 

This makes gradient ascent/descent so valuable, because we do not need 
any formula to be able to calculate the right direction. We do not have 
access to a formula of our solution space, we only have an output of how 
well this exact solution performed.

If we did have access to a formula like !(#) = #! + 4#, we could take the 
derivative of this function and find the local and global optimas from one 
calculation, by setting ∇! = 0. But the gradient descent/ascent algorithm 
will instead point us in the right direction with the output from one 
point/solution.

EXAMPLE:

This will also be the case in a 3-dimentional space

Here, you can see that the path from the first selected solution is not 
straight ahead to the local minima, but that the algorithm chose to go in 
the direction of the steepest ascent in that exact moment, step by step.

The algorithm is able to calculate the direction by creating a #"#$ from a 
#", where * is iterations in a loop of the function

#"#$ = #" + +∇!(#")

The algorithm starts at a solution #% and calculates the next step, #$ by 
using the function for gradient descent/ascent. Then it will calculate the #!
(solution nr.2) from the #$ (solution nr. 1), the #& from #! and so on until it 
reaches a local optima, or a predetermined demand. Usually, it will stop 
when the gradient is around 0, but it is also possible to set a maximum 
amount of steps.

How big of a step the algorithm will move is determined by the step size +. 
Sometimes the step size is refered to as ,, but in this course it is +. The 
step size should not be too large or small, since this will either make the 
algorithm too slow or that it will not be able to reach a local minima.

Step size too small

Step size too big

Step size good

Sources
https://www.khanacademy.org/math/multivariable-calculus/applications-
of-multivariable-derivatives/optimizing-multivariable-functions/a/what-is-
gradient-descent

Gradient descent/ascent
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https://www.uio.no/studier/emner/matnat/ifi/IN3050/v23/groups/gradient-descentascent.pdf


DeepDream Implementation

• Prepare for the feature extraction

• Calculate loss: sum of the normalized activations of chosen layers

• Calculate gradients of the loss w.r.t the image, and add them to the original image
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https://lipzh5.github.io/presentation240318/assets/deepdream_loss.png
https://lipzh5.github.io/presentation240318/assets/deepdream_gradientascent.png


More Examples

Figure: The image on the top-left is the input image. Ask the GoogleNet to amplify the features
recognized by the the inception 5a/3x3 layer. Results after 10, 15, 20 iterations are demonstrated in
the last 3 images.
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https://gombru.github.io/2018/10/10/barcelona_deepdream/
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Neural Style Transfer

• What is it?

• Separate and recombine content and style of natural images 1 (how?)

1Image Style Transfer Using Convolutional Neural Networks
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https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf


Content Representation

Figure: Visualization of feature maps at certain layers in VGG19.
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Content Representation

• Content representation: feature responses in higher layers of the network

F l, P l ∈ RNl×Ml

Figure: Left: #»x , image to update. Right: #»p , content image.
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Content Reconstruction

• Generate an image that minimizes the content loss

Lcontent(
#»p , #»x , l) =

1

2

∑

i,j

(F l
ij − P l

ij)
2 (1)

• Compute derivative w.r.t. the activations in layer l

∂Lcontent

∂F l
ij

=

{
(F l − P l)ij F l

ij > 0
0 F l

ij < 0
(2)
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How to Optimize? Gradient Descent

• Gradient explanation: F l is the feature representation at layer l with ReLU activation

ReLU(x) =

{
x x > 0
0 x ≤ 0

= max(0, x), ReLU
′
(x) =

{
1 x > 0
0 x < 0

• Efficient gradient computation: chain rule and backpropagation

q = x+ y, f = q ∗ z
∂f

∂x
=

∂f

∂q

∂q

∂x
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https://cs231n.github.io/optimization-2/#backprop


Computational Graph

• Gates communicating to each other through gradient signal
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Backpropagation: An Intuitive View

• Sum operation distributes gradients equally to all its inputs

• Max operation routes the gradient to the higher input

• Multiply gate takes the input activations, swaps them and multiplies by its gradients
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Content Reconstruction in Practice

• Define your model, loss function, select an optimizer and train

• Tensorflow will take care of the rest (no need to write the backprop on your own)
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https://lipzh5.github.io/presentation240318/assets/nst_content_reconstruction_model_code.png


Content Reconstructions

Figure: Reconstruct the content from different layers: conv1 2, conv2 2, conv3 2, conv4 2, conv5 2.
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Style Representation

• Style representation: feature correlations between different filter responses

Gl, Al ∈ RNl×Nl

Gl
ij =

∑

k

F l
ikF

l
jk (3)

Figure: Left: #»x , image to update. Right: #»a , style image.
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Gram Matrix in Practice

• Hermitian matrix of inner products in an inner product space

• Gl
ij is the inner product between the vectorised feature maps i and j in layer l

Gl
ij =

∑

k

F l
ikF

l
jk

• Matrix formulation

F l =




F l
11 · · · F l

1Ml

...
. . .

...
F l
Nl1

· · · F l
NlMl


 , (F l)T =




F l
11 · · · F l

1Nl

...
. . .

...
F l
Ml1

· · · F l
MlNl




Gl = F l(F l)T ∈ RNl×Nl
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Gram Matrix in Practice

Two implementations:

• version1: reshape and matmul

• version2: einsum
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https://arxiv.org/pdf/1701.01036.pdf


Style Reconstruction

• Generate an image that minimizes the style loss

Lstyle(
#»a , #»x ) =

L∑

l=0

wlEl (4)

El =
1

4N2
l M

2
l

∑

ij

(Gl
ij −Al

ij)
2 (5)

• Compute derivative w.r.t. the activations in layer l

∂El

∂F l
ij

=

{
1

N2
l M

2
l
((F l)T (Gl −Al))ij F l

ij > 0

0 F l
ij < 0

(6)
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Style Reconstructions

Figure: Reconstruct the style from a style representation built on different subsets of CNN layers:
{conv1 1}, {conv1 1, conv2 1}, {conv1 1, conv2 1, conv3 1}, {conv1 1, conv2 1, conv3 1, conv4 1},
{conv1 1, conv2 1, conv3 1, conv4 1, conv5 1}.
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Style Transfer

• Jointly minimize the distance of feature representations of a white noise image from

— the content representation of the photograph in one layer and
— the style representation of the painting defined on a number of layers

Ltotal(
#»p , #»a , #»x ) = αLcontent(

#»p , #»x ) + βLstyle(
#»a , #»x ) (7)
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Style Transfer
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Figure 2. Style transfer algorithm. First content and style features are extracted and stored. The style image a⃗ is passed through the network
and its style representation Al on all layers included are computed and stored (left). The content image p⃗ is passed through the network
and the content representation P l in one layer is stored (right). Then a random white noise image x⃗ is passed through the network and its
style features Gl and content features F l are computed. On each layer included in the style representation, the element-wise mean squared
difference between Gl and Al is computed to give the style loss Lstyle (left). Also the mean squared difference between F l and P l is
computed to give the content loss Lcontent (right). The total loss Ltotal is then a linear combination between the content and the style loss.
Its derivative with respect to the pixel values can be computed using error back-propagation (middle). This gradient is used to iteratively
update the image x⃗ until it simultaneously matches the style features of the style image a⃗ and the content features of the content image p⃗
(middle, bottom).

layers of the network by constructing an image that matches
the style representation of a given input image (Fig 1, style
reconstructions). This is done by using gradient descent
from a white noise image to minimise the mean-squared
distance between the entries of the Gram matrices from the
original image and the Gram matrices of the image to be
generated [10, 25].

Let a⃗ and x⃗ be the original image and the image that is
generated, and Al and Gl their respective style representa-
tion in layer l. The contribution of layer l to the total loss is
then

El =
1

4N2
l M2

l

∑

i,j

(
Gl

ij − Al
ij

)2
(4)

and the total style loss is

Lstyle(⃗a, x⃗) =

L∑

l=0

wlEl, (5)

where wl are weighting factors of the contribution of each
layer to the total loss (see below for specific values of wl in

our results). The derivative of El with respect to the activa-
tions in layer l can be computed analytically:

∂El

∂F l
ij

=

{
1

N2
l M2

l

(
(F l)T

(
Gl − Al

))
ji

if F l
ij > 0

0 if F l
ij < 0 .

(6)

The gradients of El with respect to the pixel values x⃗ can
be readily computed using standard error back-propagation
(Fig 2, left).

2.3. Style transfer

To transfer the style of an artwork a⃗ onto a photograph p⃗
we synthesise a new image that simultaneously matches the
content representation of p⃗ and the style representation of a⃗
(Fig 2). Thus we jointly minimise the distance of the fea-
ture representations of a white noise image from the content
representation of the photograph in one layer and the style
representation of the painting defined on a number of layers
of the Convolutional Neural Network. The loss function we
minimise is

2417

Figure: Overview of the style transfer algorithm.
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Neural Style Transfer Implementation

• Define our model for both content and style feature extraction

• Loss function and optimizer

• Wrapping up
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https://lipzh5.github.io/presentation240318/assets/nst_content_style_model.png
https://lipzh5.github.io/presentation240318/assets/nst_loss_fns.png
https://keras.io/api/optimizers/adam/


More Examples
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Trade-off Between Content and Style Matching

Ltotal(p⃗, a⃗, x⃗) = αLcontent(p⃗, x⃗) + βLstyle(⃗a, x⃗) (7)

where α and β are the weighting factors for content and
style reconstruction, respectively. The gradient with respect
to the pixel values ∂Ltotal

∂x⃗ can be used as input for some nu-
merical optimisation strategy. Here we use L-BFGS [32],
which we found to work best for image synthesis. To ex-
tract image information on comparable scales, we always
resized the style image to the same size as the content im-
age before computing its feature representations. Finally,
note that in difference to [24] we do not regularise our syn-
thesis results with image priors. It could be argued, though,
that the texture features from lower layers in the network
act as a specific image prior for the style image. Addition-
ally some differences in the image synthesis are expected
due to the different network architecture and optimisation
algorithm we use.

3. Results
The key finding of this paper is that the representations of

content and style in the Convolutional Neural Network are
well separable. That is, we can manipulate both representa-
tions independently to produce new, perceptually meaning-
ful images. To demonstrate this finding, we generate im-
ages that mix the content and style representation from two
different source images. In particular, we match the con-
tent representation of a photograph depicting the riverfront
of the Neckar river in Tübingen, Germany and the style
representations of several well-known artworks taken from
different periods of art (Fig 3). The images shown in Fig
3 were synthesised by matching the content representation
on layer ‘conv4 2’ and the style representation on layers
‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’
(wl = 1/5 in those layers, wl = 0 in all other layers) . The
ratio α/β was either 1 × 10−3 (Fig 3 B), 8 × 10−4 (Fig 3
C), 5 × 10−3 (Fig 3 D), or 5 × 10−4 (Fig 3 E, F).

3.1. Trade-off between content and style matching

Of course, image content and style cannot be completely
disentangled. When synthesising an image that combines
the content of one image with the style of another, there
usually does not exist an image that perfectly matches both
constraints at the same time. However, since the loss func-
tion we minimise during image synthesis is a linear com-
bination between the loss functions for content and style
respectively, we can smoothly regulate the emphasis on ei-
ther reconstructing the content or the style (Fig 4). A strong
emphasis on style will result in images that match the ap-
pearance of the artwork, effectively giving a texturised ver-
sion of it, but show hardly any of the photograph’s content
(α/β = 1 × 10−4, Fig 4, top left). When placing strong

10-2

10-4 10-3

10-1

Figure 4. Relative weighting of matching content and style of the
respective source images. The ratio α/β between matching the
content and matching the style increases from top left to bottom
right. A high emphasis on the style effectively produces a tex-
turised version of the style image (top left). A high emphasis on
the content produces an image with only little stylisation (bottom
right). In practice one can smoothly interpolate between the two
extremes.

emphasis on content, one can clearly identify the photo-
graph, but the style of the painting is not as well-matched
(α/β = 1 × 10−1, Fig 4, bottom right). For a specific pair
of content and style images one can adjust the trade-off be-
tween content and style to create visually appealing images.

3.2. Effect of different layers of the Convolutional
Neural Network

Another important factor in the image synthesis process
is the choice of layers to match the content and style repre-
sentation on. As outlined above, the style representation is
a multi-scale representation that includes multiple layers of
the neural network. The number and position of these lay-
ers determines the local scale on which the style is matched,
leading to different visual experiences (Fig 1, style recon-
structions). We find that matching the style representations
up to higher layers in the network preserves local images
structures an increasingly large scale, leading to a smoother
and more continuous visual experience. Thus, the visually
most appealing images are usually created by matching the
style representation up to high layers in the network, which
is why for all images shown we match the style features
in layers ‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and
‘conv5 1’ of the network.

To analyse the effect of using different layers to match
the content features, we present a style transfer result ob-
tained by stylising a photograph with the same artwork and
parameter configuration (α/β = 1 × 10−3), but in one

2419

Figure: Relative weighting of matching content and style of the respective source images.
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Effect of Matching Different Layers in CNN
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Figure: Matching the content representation on layer ‘conv2 2’ preserves much of the fine structure of
the original image. While the content is displayed in the style of the painting when matching the
content representation on layer ‘conv4 2’. 32 / 35



Initialisation of the Gradient Descent
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Figure: A Initialisation from the content image. B Initialisation from the style image. C Four samples
of images initialisation from different white noise images. (α/β = 1× 10−3 for all images)
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FYI

• DeepDream vs Neural Style Transfer

— generative
— feature map
— gradient w.r.t the input image
— ...

• References:

— Convolutional Neural Networks for Visual Recognition

— Inceptionism: Going Deeper Into Neural Networks

— Image Style Transfer Using Convolutional Neural Networks

— Very Deep Convolutional Networks for Large-Scale Image Recognition

• Code is available here
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https://cs231n.github.io/convolutional-networks/
https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1409.1556v6.pdf
https://github.com/lipzh5/DeepDreamNeuralStyleTransfer


Thank you very much!
Q&A

peizhen.li1@students.mq.edu.au
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https://lipzh5.github.io/Peizhen_Li.pdf
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