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Revisit Convolutional Neural Networks

A ConvNet is made up of Layers. Every Layer has a simple API: It transforms an input 3D
volume to an output 3D volume with some differentiable function that may or may not have

parameters

e Convolutional layer

e Pooling layer
e Fully connected layer
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https://lipzh5.github.io/presentation240318/assets/convolution.gif
https://lipzh5.github.io/presentation240318/assets/pooling.gif
https://keras.io/api/layers/core_layers/dense/

VGG Network Recap

Published in the paper titled Very Deep Convolutional Networks for Large-Scale Image
Recognition
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Figure: VGG16: a total of 16 weight layers.
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https://arxiv.org/pdf/1409.1556v6.pdf
https://arxiv.org/pdf/1409.1556v6.pdf
https://lipzh5.github.io/presentation240318/assets/conv_net_configuration.pdf

VGG Network Recap
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Figure: VGG19: A total of 19 weight layers.
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https://colab.research.google.com/drive/1M5yBSDrK9uqTxMipt_nuCU1K2IhVqURe?usp=sharing
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DeepDream

e What is it? An algorithm that visualizes the patterns learned by a neural network
e Over-interprets and enhances the patterns it sees in an image

Figure: You can make a neural network “dream” and enhance the surreal patterns it sees in an image
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Intuition Behind: Going Deeper into Neural Networks

Whatever you see there, | want more of it

e Recall canonical ANN training procedures (example)
e What exactly goes on at each layer?

e Amplify certain neuron’s activation

Figure: Dream on Ameca at different steps: 100, 500, 1000, 2000
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https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html
https://colab.research.google.com/drive/1hHSz7TROo--HK2SCqPF4zR6m8EqmZtLS?usp=sharing

How Does the DeepDream Algorithm Work

Built upon a pre-trained convolutional neural network

Select target layers and compute activations of the chosen layers

Calculate the gradient of activations w.r.t the input image

Update the image using gradient ascent
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https://www.uio.no/studier/emner/matnat/ifi/IN3050/v23/groups/gradient-descentascent.pdf

DeepDream Implementation

e Prepare for the feature extraction

# Prepare the feature extraction model

base_model = tf.keras.applications.InceptionV3(include_top=False, weights="imagenet')
# maximize the activations of these layers

names = ('mixed3', 'mixed5')

layers = [base_model.get_layer(_layer_name).output for _layer_name in names]

# create the feature extraction model

dream_model = tf.keras.Model(inputs=base_model.inputs, outputs=layers)

e Calculate loss: sum of the normalized activations of chosen layers

e Calculate gradients of the loss w.r.t the image, and add them to the original image
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https://lipzh5.github.io/presentation240318/assets/deepdream_loss.png
https://lipzh5.github.io/presentation240318/assets/deepdream_gradientascent.png

More Examples

Figure: The image on the top-left is the input image. Ask the GoogleNet to amplify the features
recognized by the the inception_5a/3x3 layer. Results after 10, 15, 20 iterations are demonstrated in

the last 3 images. 11/35


https://gombru.github.io/2018/10/10/barcelona_deepdream/
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Neural Style Transfer

e What is it?

e Separate and recombine content and style of natural images ! (how?)

CONTENT IMAGE STYHLE IMAGE GENERATED IMAGE

llmage Style Transfer Using Convolutional Neural Networks
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https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Content Representation
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Figure: Visualization of feature maps at certain layers in VGG19.




Content Representation

e Content representation: feature responses in higher layers of the network
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Figure: Left: 27, image to update. Right: 7, content image.
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Content Reconstruction

e Generate an image that minimizes the content loss

1

Econtent(ﬁv fv l) - 5 Z(El] - Pilj>2 (1)
4,J

e Compute derivative w.r.t. the activations in layer [

OLconens _ [ (F' =Py Fj; >0 @)
oFt 10 Fl <0
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How to Optimize? Gradient Descent

e Gradient explanation: F' is the feature representation at layer [ with ReLU activation

1 >0
0 =<0

ReLU(z) = { g i zg = max(0, x), ReLUI(:E) = {

e Efficient gradient computation: chain rule and backpropagation

g=z+y, f=qxz
of _0f g

or anx
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https://cs231n.github.io/optimization-2/#backprop

Computational Graph

Gates communicating to each other through gradient signal

# set some inputs

X, ¥, 2=-2,5, -4

# perform the forward pass

q=x+y #q becomes 3

f=qx%xz #f becomes -12

# perform the backward pass (backpropagation) in reverse order:
# first backprop through f = q * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdq = z # df/dq = z, so gradient on q becomes -4

dqdx = 1.0

dqdy = 1.0

# now backprop through q = x + y

dfdx = dfdg * dqdx # The multiplication here is the chain rule!
dfdy = dfdg * dqdy
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Backpropagation: An Intuitive View

e Sum operation distributes gradients equally to all its inputs
e Max operation routes the gradient to the higher input

e Multiply gate takes the input activations, swaps them and multiplies by its gradients

1000 (%5 -20.00
200 \_/ 1.00
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Content Reconstruction in Practice

e Define your model, loss function, select an optimizer and train

e Tensorflow will take care of the rest (no need to write the backprop on your own)

# optmizer

opt

= tf.keras.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=le-1)

# loss function

def

—

@t
def

content_only_loss(outputs: dict, target_features: dict):
return tf.add_n{[tf.reduce_mean((outputs [name]-target_features[name])#*2) for name in outputs.keys()])

.function()

train_step(model, image_to_gen, target_features, loss_func, optimizer):
with tf.GradientTape() as tape:

outputs = model(image_to_gen)

loss = loss_func(outputs, target_features)
grad = tape.gradient(loss, image_to_gen)
optimizer.apply_gradients([(grad, image_to_gen)])
image_to_gen.assign(clip_0_1(image_to_gen))
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https://lipzh5.github.io/presentation240318/assets/nst_content_reconstruction_model_code.png

Content Reconstructions

CONTENT IMAGE

Figure: Reconstruct the content from different layers: convl_2, conv2_2, conv3_2, conv4_2, conv5_2.
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Style Representation

e Style representation: feature correlations between different filter responses
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Figure: Left: @, image to update. Right: @, style image.
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Gram Matrix in Practice

e Hermitian matrix of inner products in an inner product space

. Géj is the inner product between the vectorised feature maps ¢ and j in layer [
1 1 gl
Giy =D FiFjy
k

e Matrix formulation
l l l l
Fypooee F1M, Fiyooe F1N,
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Gram Matrix in Practice

Two implementations:

e versionl: reshape and matmul

def gram_matrix_plain(input_tensor):
input_tensor = input_tensor[0] # (H, W, C) , C is the channel size or #filters
input_tensor = tf.transpose(input_tensor, perm: (2, 0, 1))
vectorized_fea = tf.reshape(input_tensor, shape: (tf.shape(input_tensor)[0], -1))
return tf.matmul(vectorized_fea, tf.transpose(vectorized_fea))

e version2: einsum

def gram_matrix(input_tensor):
result = tf.linalg.einsum( equation: 'bijec, bijd->bed', *inputs: input_tensor, input_tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
return result/num_locations
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https://arxiv.org/pdf/1701.01036.pdf

Style Reconstruction

e Generate an image that minimizes the style loss

L
Estyle(a: ?) - Zlel (4)
=0
1
E, (Gij - Aij)Q (5)

e Compute derivative w.r.t. the activations in layer [

oL, _ W((Fl)T(GZ —AY)iy; F >0
OF; 0 Fj; <0
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Style Reconstructions

STYLE IMAGE
BE

Figure: Reconstruct the style from a style representation built on different subsets of CNN layers:
{conv1l_1}, {convl_1, conv2_1}, {convl_1, conv2_1, conv3_1}, {convl_1, conv2_1, conv3_1, conv4_1},
{convl_1, conv2_1, conv3_1, conv4_1, conv5_1}.
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Style Transfer

e Jointly minimize the distance of feature representations of a white noise image from

— the content representation of the photograph in one layer and
— the style representation of the painting defined on a number of layers

Etotal(l‘i 37 57’) = aﬁcontent(ﬁ, »TC)) + ﬂﬁstyle(aa 1‘5) (7)

27/35



Style Transfer

2
B = Z (GF -4 ['total = a[*content + ﬁﬁstyle

—— GL=Y FiF)

N  Pl)} ool
e s Leontent =y (F' = P') poolt

OLsotal Gradient
] descent

o zlel - -
[ o 29
xr = '
N

Figure: Overview of the style transfer algorithm.
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Neural Style Transfer Implementation

e Define our model for both content and style feature extraction
e Loss function and optimizer
e Wrapping up

@tf.function()
def train_step(model, image_to_gen, loss_func, optimizer, skkwargs):
with tf.GradientTape() as tape:
outputs = model(image_to_gen)
loss = loss_func(outputs, skkwargs)
grad = tape.gradient(loss, image_to_gen)
optimizer.apply_gradients([(grad, image_to_gen)])
image_to_gen.assign(clip_0_1(image_to_gen))
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https://lipzh5.github.io/presentation240318/assets/nst_content_style_model.png
https://lipzh5.github.io/presentation240318/assets/nst_loss_fns.png
https://keras.io/api/optimizers/adam/

More Examples

Figure: A Neckarfront in Tubingen, Germany. B The Shipwreck of the Minotaur. C The Starry Night
D Der Schrei. E Femme nue assise. F Composition VII. 30/35



Trade-off Between Content and Style Matching

Figure: Relative weighting of matching content and style of the respective source images. 31,35



Effect of Matching Different Layers in CNN

Conv2_2
Conv4_2

Figure: Matching the content representation on layer ‘conv2_2’ preserves much of the fine structure of

the original image. While the content is displayed in the style of the painting when matching the
content representation on layer ‘conv4_2'.
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Initialisation of the Gradient Descent

Figure: A Initialisation from the content image. B Initialisation from the style image. C Four samples
of images initialisation from different white noise images. (a/ = 1 x 10™2 for all images)
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e DeepDream vs Neural Style Transfer

— generative
— feature map
— gradient w.r.t the input image

e References:
— Convolutional Neural Networks for Visual Recognition
— Inceptionism: Going Deeper Into Neural Networks
— Image Style Transfer Using Convolutional Neural Networks
— Very Deep Convolutional Networks for Large-Scale Image Recognition

e Code is available here
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https://cs231n.github.io/convolutional-networks/
https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1409.1556v6.pdf
https://github.com/lipzh5/DeepDreamNeuralStyleTransfer

Thank you very much!
Q&A

peizhen.lil@students.mq.edu.au
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https://lipzh5.github.io/Peizhen_Li.pdf
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