" MACQUARIE
"> University

SYDNEY-AUSTRALIA

DeepDream & Neural Style Transfer

Peizhen Li
March 18, 2024

Outline

» Revisit Convolutional Neural Networks

» DeepDream

» Neural Style Transfer

2/35

Revisit Convolutional Neural Networks

A ConvNet is made up of Layers. Every Layer has a simple API: It transforms an input 3D
volume to an output 3D volume with some differentiable function that may or may not have

parameters

e Convolutional layer

e Pooling layer
e Fully connected layer

depth

€SS] height
QOQOOK) - =
OOOOOK idth

2

3/35

https://lipzh5.github.io/presentation240318/assets/convolution.gif
https://lipzh5.github.io/presentation240318/assets/pooling.gif
https://keras.io/api/layers/core_layers/dense/

VGG Network Recap

Published in the paper titled Very Deep Convolutional Networks for Large-Scale Image
Recognition

224 x224x3 ZM X224 x 64

112%[112 % 128

//f
/ 56} 56 x 206
[28 x 28 % 512 THTx512
“f Pl fle l C1x1x4096 1% 1% 1000

() convolution+ReLl!

) max poaling
= fully connected+ReLU

(1) softmax

Figure: VGG16: a total of 16 weight layers.
4/35

https://arxiv.org/pdf/1409.1556v6.pdf
https://arxiv.org/pdf/1409.1556v6.pdf
https://lipzh5.github.io/presentation240318/assets/conv_net_configuration.pdf

VGG Network Recap

224x224 :l:fr‘./"

MZx112x128

Taxi4u512
TaTx512

| —g ,. e

y.

maxpool | maxpool | maxpool | maxpool

| aspes | depth=256 depth=512 depth=512 .i,_400¢
depth=64 depth=128 3x3conv 3x3 conv 3x3 conv - FC1 i
33 conv 3x3 conv LDI1V3_ 1 COHV4_1 f_UerS_“l FC2
convl 1 conv2 1 conv3_2 convd_2 conv5_2 size=1000
convl_2 conv2_2 conv3d_3 convd_3 conv5_3 softmax
conv3_4 conv4_4 convs_4

Figure: VGG19: A total of 19 weight layers.

Sox56x256
i 28x28x512

5/35

https://colab.research.google.com/drive/1M5yBSDrK9uqTxMipt_nuCU1K2IhVqURe?usp=sharing

Outline

» DeepDream

6/35

DeepDream

e What is it? An algorithm that visualizes the patterns learned by a neural network
e Over-interprets and enhances the patterns it sees in an image

Figure: You can make a neural network “dream” and enhance the surreal patterns it sees in an image

7/35

Intuition Behind: Going Deeper into Neural Networks

Whatever you see there, | want more of it

e Recall canonical ANN training procedures (example)
e What exactly goes on at each layer?

e Amplify certain neuron’s activation

Figure: Dream on Ameca at different steps: 100, 500, 1000, 2000

8/35

https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html
https://colab.research.google.com/drive/1hHSz7TROo--HK2SCqPF4zR6m8EqmZtLS?usp=sharing

How Does the DeepDream Algorithm Work

Built upon a pre-trained convolutional neural network

Select target layers and compute activations of the chosen layers

Calculate the gradient of activations w.r.t the input image

Update the image using gradient ascent

/)

Example o
gredivt ogcnt

N/

9/35

https://www.uio.no/studier/emner/matnat/ifi/IN3050/v23/groups/gradient-descentascent.pdf

DeepDream Implementation

e Prepare for the feature extraction

Prepare the feature extraction model

base_model = tf.keras.applications.InceptionV3(include_top=False, weights="imagenet')
maximize the activations of these layers

names = ('mixed3', 'mixed5')

layers = [base_model.get_layer(_layer_name).output for _layer_name in names]

create the feature extraction model

dream_model = tf.keras.Model(inputs=base_model.inputs, outputs=layers)

e Calculate loss: sum of the normalized activations of chosen layers

e Calculate gradients of the loss w.r.t the image, and add them to the original image

10/35

https://lipzh5.github.io/presentation240318/assets/deepdream_loss.png
https://lipzh5.github.io/presentation240318/assets/deepdream_gradientascent.png

More Examples

Figure: The image on the top-left is the input image. Ask the GoogleNet to amplify the features
recognized by the the inception_5a/3x3 layer. Results after 10, 15, 20 iterations are demonstrated in

the last 3 images. 11/35

https://gombru.github.io/2018/10/10/barcelona_deepdream/

Outline

» Neural Style Transfer

12/35

Neural Style Transfer

e What is it?

e Separate and recombine content and style of natural images ! (how?)

CONTENT IMAGE STYHLE IMAGE GENERATED IMAGE

llmage Style Transfer Using Convolutional Neural Networks
13/35

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Content Representation

blocki_convl blocki_conv2 block2_convli block3_conv4 block4_conv4 block5_convéd

Figure: Visualization of feature maps at certain layers in VGG19.

Content Representation

e Content representation: feature responses in higher layers of the network

Fl,Pl c RNZXMl

Figure: Left: 27, image to update. Right: 7, content image.

15/35

Content Reconstruction

e Generate an image that minimizes the content loss

1

Econtent(ﬁv fv l) - 5 Z(El] - Pilj>2 (1)
4,J

e Compute derivative w.r.t. the activations in layer [

OLconens _ [(F' =Py Fj; >0 @)
oFt 10 Fl <0

16/35

How to Optimize? Gradient Descent

e Gradient explanation: F' is the feature representation at layer [with ReLU activation

1 >0
0 =<0

ReLU(z) = { g i zg = max(0, x), ReLUI(:E) = {

e Efficient gradient computation: chain rule and backpropagation

g=z+y, f=qxz
of _0f g

or anx

17/35

https://cs231n.github.io/optimization-2/#backprop

Computational Graph

Gates communicating to each other through gradient signal

set some inputs

X, ¥, 2=-2,5, -4

perform the forward pass

q=x+y #q becomes 3

f=qx%xz #f becomes -12

perform the backward pass (backpropagation) in reverse order:
first backprop through f = q * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdq = z # df/dq = z, so gradient on q becomes -4

dqdx = 1.0

dqdy = 1.0

now backprop through q = x + y

dfdx = dfdg * dqdx # The multiplication here is the chain rule!
dfdy = dfdg * dqdy

18/35

Backpropagation: An Intuitive View

e Sum operation distributes gradients equally to all its inputs
e Max operation routes the gradient to the higher input

e Multiply gate takes the input activations, swaps them and multiplies by its gradients

1000 (%5 -20.00
200 _/ 1.00

19/35

Content Reconstruction in Practice

e Define your model, loss function, select an optimizer and train

e Tensorflow will take care of the rest (no need to write the backprop on your own)

optmizer

opt

= tf.keras.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=le-1)

loss function

def

—

@t
def

content_only_loss(outputs: dict, target_features: dict):
return tf.add_n{[tf.reduce_mean((outputs [name]-target_features[name])#*2) for name in outputs.keys()])

.function()

train_step(model, image_to_gen, target_features, loss_func, optimizer):
with tf.GradientTape() as tape:

outputs = model(image_to_gen)

loss = loss_func(outputs, target_features)
grad = tape.gradient(loss, image_to_gen)
optimizer.apply_gradients([(grad, image_to_gen)])
image_to_gen.assign(clip_0_1(image_to_gen))

20/35

https://lipzh5.github.io/presentation240318/assets/nst_content_reconstruction_model_code.png

Content Reconstructions

CONTENT IMAGE

Figure: Reconstruct the content from different layers: convl_2, conv2_2, conv3_2, conv4_2, conv5_2.

21/35

Style Representation

e Style representation: feature correlations between different filter responses

leAl 6 RNZXNL
Giy =D FiFly (3)
k

Figure: Left: @, image to update. Right: @, style image.
22/35

Gram Matrix in Practice

e Hermitian matrix of inner products in an inner product space

. Géj is the inner product between the vectorised feature maps ¢ and j in layer [
1 1 gl
Giy =D FiFjy
k

e Matrix formulation
l l l l
Fypooee F1M, Fiyooe F1N,
Fl = : 5 (Fl)T = :

l ! l !
Fya o Faw, Froa - Fun,

Gl — Fl(Fl)T c RNZXNI

23/35

Gram Matrix in Practice

Two implementations:

e versionl: reshape and matmul

def gram_matrix_plain(input_tensor):
input_tensor = input_tensor[0] # (H, W, C) , C is the channel size or #filters
input_tensor = tf.transpose(input_tensor, perm: (2, 0, 1))
vectorized_fea = tf.reshape(input_tensor, shape: (tf.shape(input_tensor)[0], -1))
return tf.matmul(vectorized_fea, tf.transpose(vectorized_fea))

e version2: einsum

def gram_matrix(input_tensor):
result = tf.linalg.einsum(equation: 'bijec, bijd->bed', *inputs: input_tensor, input_tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
return result/num_locations
24 /35

https://arxiv.org/pdf/1701.01036.pdf

Style Reconstruction

e Generate an image that minimizes the style loss

L
Estyle(a: ?) - Zlel (4)
=0
1
E, (Gij - Aij)Q (5)

e Compute derivative w.r.t. the activations in layer [

oL, _ W((Fl)T(GZ —AY)iy; F >0
OF; 0 Fj; <0

25/35

Style Reconstructions

STYLE IMAGE
BE

Figure: Reconstruct the style from a style representation built on different subsets of CNN layers:
{conv1l_1}, {convl_1, conv2_1}, {convl_1, conv2_1, conv3_1}, {convl_1, conv2_1, conv3_1, conv4_1},
{convl_1, conv2_1, conv3_1, conv4_1, conv5_1}.

26 /35

Style Transfer

e Jointly minimize the distance of feature representations of a white noise image from

— the content representation of the photograph in one layer and
— the style representation of the painting defined on a number of layers

Etotal(l‘i 37 57’) = aﬁcontent(ﬁ, »TC)) + ﬂﬁstyle(aa 1‘5) (7)

27/35

Style Transfer

2
B = Z (GF -4 ['total = a[*content + ﬁﬁstyle

—— GL=Y FiF)

N Pl)} ool
e s Leontent =y (F' = P') poolt

OLsotal Gradient
] descent

o zlel - -
[o 29
xr = '
N

Figure: Overview of the style transfer algorithm.

28/35

Neural Style Transfer Implementation

e Define our model for both content and style feature extraction
e Loss function and optimizer
e Wrapping up

@tf.function()
def train_step(model, image_to_gen, loss_func, optimizer, skkwargs):
with tf.GradientTape() as tape:
outputs = model(image_to_gen)
loss = loss_func(outputs, skkwargs)
grad = tape.gradient(loss, image_to_gen)
optimizer.apply_gradients([(grad, image_to_gen)])
image_to_gen.assign(clip_0_1(image_to_gen))

29/35

https://lipzh5.github.io/presentation240318/assets/nst_content_style_model.png
https://lipzh5.github.io/presentation240318/assets/nst_loss_fns.png
https://keras.io/api/optimizers/adam/

More Examples

Figure: A Neckarfront in Tubingen, Germany. B The Shipwreck of the Minotaur. C The Starry Night
D Der Schrei. E Femme nue assise. F Composition VII. 30/35

Trade-off Between Content and Style Matching

Figure: Relative weighting of matching content and style of the respective source images. 31,35

Effect of Matching Different Layers in CNN

Conv2_2
Conv4_2

Figure: Matching the content representation on layer ‘conv2_2’ preserves much of the fine structure of

the original image. While the content is displayed in the style of the painting when matching the
content representation on layer ‘conv4_2'.

32/35

Initialisation of the Gradient Descent

Figure: A Initialisation from the content image. B Initialisation from the style image. C Four samples
of images initialisation from different white noise images. (a/ = 1 x 10™2 for all images)
33/35

e DeepDream vs Neural Style Transfer

— generative
— feature map
— gradient w.r.t the input image

e References:
— Convolutional Neural Networks for Visual Recognition
— Inceptionism: Going Deeper Into Neural Networks
— Image Style Transfer Using Convolutional Neural Networks
— Very Deep Convolutional Networks for Large-Scale Image Recognition

e Code is available here

34/35

https://cs231n.github.io/convolutional-networks/
https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1409.1556v6.pdf
https://github.com/lipzh5/DeepDreamNeuralStyleTransfer

Thank you very much!
Q&A

peizhen.lil@students.mq.edu.au

35/35

https://lipzh5.github.io/Peizhen_Li.pdf

	Revisit Convolutional Neural Networks
	DeepDream
	Neural Style Transfer

